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ABSTRACT

Simple games reflect with more or less fidelity the strategic tensions inherent to
voting systems. An interesting feature of these systems is their capability to act,
i.e. their decisiveness. We introduce in this work a normalized measure of the
inertia of any simple game from the strictly structural or normative viewpoint.
Mathematical properties of this measure are presented, including axiomatic char-
acterizations. The application to a comparative study of certain actual voting
systems evidences striking differences as to the inertia degrees they show.
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1. INTRODUCTION

The design of voting mechanisms applies to many areas of social, political and economical
activity. It becomes more and more sophisticated, as long as it pretends to satisfy an
increasing number of subtlety requirements. As the real life experience shows, two main
tendencies arise. The first one tries to strengthen the agility of the mechanism in order
to take decisions, and usually applies to national and regional parliaments, town councils,
and many other committee systems. The second tendency is rather interested in protecting
the rights of certain minorities, even at the cost of introducing a remarkable inertia in the
mechanism, and it is especially found in supranational organizations. Of course, a basic
problem is to conciliate both tendencies. This goal is often difficult to achieve, and it seems
therefore interesting to establish objective criteria to evaluate, and hence to compare, the
agility/inertia of these decision–making procedures.

The aim of this paper is that of contributing to a better understanding of this ques-
tion by providing a numerical measure of inertia. This possibility was implicitly suggested
by Shapley and Shubik [1954] and only very partially developed by Coleman [1971]. The
measure introduced here will be called decisiveness index. The decisiveness index applies to
every simple game and is closely related to the Banzhaf value defined by Owen [1975]. This
relationship proves to be useful for computation purposes.

In the sequel, statements will be given without proof. Proofs can be found in Carreras
[2001b], and a copy of this reference can be freely obtained from the author upon request.

2. SIMPLE GAMES AND THE DECISIVENESS INDEX

Definition 2.1. A (monotonic) simple game is a pair (N, W ), where N is a finite set
of players and W is a collection of coalitions (subsets of N) that satisfies the following



properties: (1) ∅ /∈ W ; (2) if S ∈ W and S ⊂ T then T ∈ W (monotonicity). A coalition
S is winning if S ∈ W , and losing otherwise. Due to monotonicity, the set of minimal
winnning coalitions W m determines the game. (For more details on simple games, the
interested reader is referred to Carreras [2001a].)

Definition 2.2. Let SG be the set of all simple games. The decisiveness index is the map
δ : SG −→ R given by

δ(N, W ) =
|W |

2n
for every (N, W ),

where n = |N |. The number δ(N, W ) will be called the (decisiveness) degree of game (N, W ).
As is obvious, δ(N, W ) = 0 iff W = ∅. Otherwise, 0 < δ(N, W ) < 1.

Given a game (N, W ), the set of coalitions 2N splits into four classes:

• D (decisive winning): class of S ∈ W such that N \ S /∈ W ;
• C (conflictive winning): class of S ∈ W such that N \ S ∈ W ;
• B (blocking): class of S /∈ W such that N \ S /∈ W ;
• A (absolutely losing): class of S /∈ W such that N \ S ∈ W .

A game (N, W ) is proper if C = ∅, and improper otherwise; the game is strong if B = ∅,
and weak otherwise. These two crossed partitions classify all simple games into four types.

Proposition 2.3. Let (N, W ) be a nonempty game and (N, W ∗) be the dual game. Then:

(a) δ(N, W ∗) + δ(N, W ) = 1.

(b) δ(N, W ∗) − δ(N, W ) =
|B| − |C|

2n
. �

Proposition 2.4. Let (N, W ) be a nonempty game.

(a) If (N, W ) is proper and strong, then δ(N, W ) = 1/2.

(b) If (N, W ) is proper and weak, then

δ(N, W ) =
1

2
−

|B|

2n+1
and

1

2n
≤ δ(N, W ) ≤

1

2
−

1

2n
.

(c) If (N, W ) is improper and strong, then

δ(N, W ) =
1

2
+

|C|

2n+1
and

1

2
+

1

2n
≤ δ(N, W ) ≤ 1 −

1

2n
.

(d) If (N, W ) is improper and weak, then

δ(N, W ) =
1

2
+

|C| − |B|

2n+1
and

1

2
−

1

2n
≤ δ(N, W ) ≤

1

2
+

1

2n
. �

Example 2.5. To illustrate the above results, it will be of interest to look at games
with n ≤ 4 players. Table 1 shows all these games (up to isomorphisms) and their main
characteristics. The games are ranked by decreasing degree. The first column gives the
ordering number. The second describes the set of minimal winning coalitions (using a
simplified notation). The third column classifies each game according to the two crossed



partitions: proper (P) or improper (I), and strong (S) or weak (W). All games are weighted
majority games, with the sole exception of the three improper and weak games; although
no representation is provided, it is not difficult to find in each case. The third column also
gives the dual game. The fourth column provides the proportions of the Banzhaf value;
to get exact values, it suffices to divide by 2n−1 = 8. Finally, the fifth column gives the
decisiveness degree of each game.

Table 1 Simple games with n ≤ 4 players

Game W m Type/ Banzhaf Decisiveness

dual value degree

1 {1;2;3;4} IS / 28 1:1:1:1 0.9375

2 {1;2;3} IS / 27 2:2:2:0 0.8750

3 {1;2;34} IS / 26 3:3:1:1 0.8125

4 {1;2} IS / 25 4:4:0:0 0.7500

5 {1;23;24;34} IS / 24 4:2:2:2 0.7500

6 {12;13;14;23;24;34} IS / 23 3:3:3:3 0.6875

7 {1;23;24} IS / 22 5:3:1:1 0.6875

8 {12;13;14;23;24} IS / 21 4:4:2:2 0.6250

9 {1;23} IS / 20 6:2:2:0 0.6250

10 {12;13;14;23} IS / 19 5:3:3:1 0.5625

11 {1;234} IS / 17 7:1:1:1 0.5625

12 {12;13;24;34} IW / 18 3:3:3:3 0.5625

13 {1} PS / 13 8:0:0:0 0.5000

14 {12;13;23} PS / 14 4:4:4:0 0.5000

15 {12;13;24} IW / 15 4:4:2:2 0.5000

16 {12;13;14;234} PS / 16 6:2:2:2 0.5000

17 {12;34} IW / 11 3:3:3:3 0.4375

18 {12;13;14} PW / 12 7:1:1:1 0.4375

19 {12;13;234} PW / 10 5:3:3:1 0.4375

20 {12;13} PW / 9 6:2:2:0 0.3750

21 {12;134;234} PW / 8 4:4:2:2 0.3750

22 {12;134} PW / 7 5:3:1:1 0.3125

23 {123;124;134;234} PW / 6 3:3:3:3 0.3125

24 {123;124;134} PW / 5 4:2:2:2 0.2500

25 {12} PW / 4 4:4:0:0 0.2500

26 {123;124} PW / 3 3:3:1:1 0.1875

27 {123} PW / 2 2:2:2:0 0.1250

28 {1234} PW / 1 1:1:1:1 0.0625

29 ∅ PW / 29 0:0:0:0 0.0000

3. MAIN PROPERTIES AND AXIOMATIC CHARACTERIZATION

Our aim in this section is to analyze the behavior of the decisiveness index with regard
to the basic forms of compounding simple games and to derive axiomatic characterizations.



Theorem 3.1. Let (N, W ) be a game.

(a) If (M, W M ) is the null extension of the game to M ⊃ N , then δ(M, W M ) = δ(N, W ).

(b) If S ⊂ N and (N−S , W−S) denotes the residual game when S leaves, then δ(N−S , W−S)
≤ δ(N, W ), and the equality holds iff all players in S are null in (N, W ).

(c) If (N, W ) = (N1, W1) × (N2, W2) × · · · × (Nr, Wr) then

δ(N, W ) =

r
∏

i=1

δ(Ni, Wi).

(d) If (N, W ′) is another game then

δ(N, W ∪ W ′) = δ(N, W ) + δ(N, W ′) − δ(N, W ∩ W ′).

(e) If, moreover, the sets E and E ′ of nonnull players, of (N, W ) and (N, W ′) respectively,
are disjoint, then

δ(N, W ∩ W ′) = δ(N, W )δ(N, W ′). �

In order to obtain an axiomatic characterization of the decisiveness index, we shall con-
sider the following properties:

(A1) Transfer property: δ(N, W ∪W ′) = δ(N, W ) + δ(N, W ′)− δ(N, W ∩W ′). This means
that the aggregate decisiveness arising from (N, W ) and (N, W ′) is exactly transferred
to (i.e. shared among) games (N, W ∪ W ′) and (N, W ∩ W ′).

(A2) Null player property: If i /∈ N and M = N ∪ {i} then δ(N, W ) = δ(M, W M ). Nei-
ther the adjunction nor the suppression of one or more null players will affect the
decisiveness of any game.

(A3) Unanimity property: δ(N, UN ) = 1/2n, where n = |N |. This measures the decisiveness
of unanimity games.

(A4) Independence property: If (N, W ) and (N, W ′) have disjoint nonnull player sets, then
δ(N, W ∩ W ′) = δ(N, W )δ(N, W ′). When combining one game with an ‘essentially
disjoint’ game, the decisiveness of the first game reduces proportionally to that of the
second one. This is a particular case of the product property, stated in Theorem 3.1(c).

(A5) Dictatorship property: δ({i}, U{i}) = 1/2. This is a particular case of the unanimity
property.

These five properties can be combined in different ways to provide alternative character-
izations of the decisiveness index. Let us see three of them. In each case, the independence
of the axiomatic system is clear. And, for not to include a trivial axiom such as δ(N, ∅) = 0,
we shall restrict ourselves to consider the set SG+ of all nonempty simple games.

Theorem 3.2. A function δ : SG+ −→ R satisfies properties A1, A2 and A3 iff it is the
decisiveness index. �

Theorem 3.3. A function δ : SG+ −→ R satisfies properties A1, A2, A4 and A5 iff it is
the decisiveness index. �

A slight modification of (A5) will give us an axiomatic characterization for the decisive-
ness index on a fixed player set N . Let us consider



(A5’) Extended dictatorship property: δ(N, U{i}) = 1/2 for all i ∈ N .

Theorem 3.4. Let N be a finite set and SG+
N be the set of all nonempty simple games on

N . A function δ : SG+
N −→ R satisfies properties A1, A4 and A5’ iff it is the restriction of

the decisiveness index to SG+
N . �

4. THE RELATIONSHIP TO THE BANZHAF VALUE

In some manner, and precisely due to its inefficiency, the Banzhaf value β measures
the decisiveness of a game from a local viewpoint, i.e., from the perspective of each player.
The following result, mentioned by Dubey and Shapley [1979] in a slightly different form,
establishes the basic relationship between the decisiveness index and the Banzhaf value.

Proposition 4.1. Let (N, W ) be a game and i ∈ N . Then

βi(N, W ) = 2δ(N, W ) − 2δ(N−i, W−i). �

Proposition 4.1 gives rise to an effective way to compute the decisiveness degree of any
game provided that some algorithm to determine the Banzhaf value is available.

Corollary 4.2. Let (N, W ) be a game, set N = {1, 2, . . . , n}, and consider the residual
games obtained by successive elimination of players, i.e.

(N, W )−i = (N−{1,2,...,i}, W−{1,2,...,i}) for i = 1, 2, . . . , n − 1.

If βi = βi(N, W )−(i−1) for i = 1, 2, . . . , n, with (N, W )−0 = (N, W ), then

δ(N, W ) =
1

2

[

β1 + β2 + · · · + βn
]

. �

In practice, it will be always convenient to eliminate players according to a ranking of
decreasing importance, if possible, in order to ease the procedure at most; this norm is
especially indicated for weighted majority games, where the importance can be measured
by the weights.

5. TWO EXAMPLES

Two actual instances of decision–making organization will be briefly analyzed here. It
is worth mentioning that our approach will be strictly normative, i.e. without including
ideological or strategic considerations.

Example 5.1. The current European Union (EU) is formed by 15 countries. The most
controversial institution within the Union is the Council of Ministers, precisely because
it is the battlefield of the agility supporters versus the inertia defenders. The weighted
representation is given by:

• Germany, United Kingdom, France and Italy, 10 votes each;
• Spain, 8 votes;
• The Netherlands, Belgium, Portugal and Greece, 5 votes;
• Austria and Sweden, 4 votes;
• Denmark, Finland and Ireland, 3 votes;
• Luxembourg, 2 votes.



A qualified majority of 62 votes out of 87 is required to pass for motions coming from
the European Commission (the EU executive body); otherwise, an additional consensus of
10 countries is demanded for approval. When passing from the former system to the latter,
the decisiveness degree moves from 0.0778 to 0.0704 and |W | decreases from 2549 to 2307
whereas |B| increases from 27669 to 28154. In percentages, power is quite proportional to
weight in both cases.

Example 5.2. As a game among parties, the Spanish Parliament Lower House (the Con-
greso de los Diputados) can be described by the weighted majority game

(N, W ) ≡ [176; w1, w2, . . . , wm],

where wj is the number of seats of party j (350 in all). The decisiveness degree and the power
distribution heavily depend on the share of seats among parties. Then every legislature must
be analyzed separately. Table 2 summarizes six legislative periods.

Table 2 Legislatures in the Spanish Parliament Lower House

Legislature Party structure Main δ(N, W ) β1(N, W )

(N, W ) party

1982–1986 [176; 202, . . . ] PSOE 0.5000 100.00 %

1986–1989 [176; 184, . . . ] PSOE 0.5000 100.00 %

1989–1993 [176; 175, . . . ] PSOE 0.4999 99.76 %

1993–1996 [176; 159, . . . ] PSOE 0.5000 50.00 %

1996–2000 [176; 156, . . . ] PP 0.4966 45.39 %

2000–2004 [176; 183, . . . ] PP 0.5000 100.00 %
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