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ABSTRACT

When analyzing times, one has to cope with several sampling problems, such as
censoring and truncation. When the (left-)truncation variable is uniformly dis-
tributed, a length-bias model follows. We extend previous models and methods
for length-biased, censored data, by distinguishing two types of censoring. We
show that, in general, the single-censoring approach is inconsistent.
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1. INTRODUCTION

When analyzing duration times, such as those encountered in survival analysis, reliability
and econometrics, sampling problems referred as truncation and censoring typically emerge.
Accounting for these issues in estimation is crucial for consistency purposes. In the last years,
some nonparametric models for left-truncation of length-bias type have been introduced
(Asgharian et al. (2002), de Uña-Álvarez (2003a, b)). These models are suitable whenever
the left-truncation variable is uniformly distributed on some time interval which contains
the support of the time under investigation. In survival analysis and epidemiology, this
modelling allows for efficient estimation of the survival curve (and related parameters) from
the so-called prevalent cases, for diseases with stationary incidence (Wang (1991), Asgharian
et al. (2002)). There exists some important backgroud coming from renewal processes theory
too; in this framework, it is known that the length-bias model appears as a limit case when
sampling times by cross-section (see Winter and Földes (1988) for access to literature).

The general situation of left-truncated, right-censored data sampled by cross-section can
be described as follows. We observe (T1, X1, γ1) , ..., (Tn, Xn, γn) independent and identically
distributed random vectors; (T1, X1, γ1) follows the distribution of the conditional variable
(T,X, γ) given that T ≤ X. Here, X is the (possibly right-censored) time of interest; γ is
the censoring indicator; and T is the left-truncation time, defined as time elapsed from the
initial event (e.g. diagnosis) to the cross-section date. By ”cross-section” we mean that the
recruited spells are those in progress at a single point in time (the cross-section date), see
Wang (1991) for further details. General nonparametric estimation methods in this setup
were investigated in many papers, including Tsai et al. (1987), Wang (1991), Lai and Ying
(1991), Gijbels and Wang (1993), Zhou (1996), and Zhou and Yip (1999). In all these
papers, the observed truncation times T1, ..., Tn play a crucial role in the construction of the
estimates.



In the length-biased situation, it is known that the truncation variable follows a uniform
distribution, and more efficient methods (which no longer depend on the observed Ti) become
available. Asgharian et al. (2002) investigated this problem under the model assumption

C − T and (T, Y − T ) are independent conditionally on T ≤ X, (1)

where C denotes the right-censoring variable, and Y the time of ultimate interest (and hence
X = min(Y,C), γ = 1{Y≤C} in this case). The proposed estimators are suitable when the
censoring risk is restricted to the following-up period after interception (i.e. cross-section),
that is, under the condition P (C ≥ T ) = 1. However, in many practical cases, censoring
risks which are inherent to the population under investigation will appear. This type of
censoring is not induced by issues related to the following-up (such as termination of the
following-up period), rather being a consequence of other types of failure which may be
experienced before (or after) the cross-section time. See de Uña-Álvarez (2003a) for further
illustration. In this competing risks setup, a model more general than (1) is needed.

In this work we introduce a general model in order to account for both types of censored
observations in the length-biased situation. As indicated in Section 2, the γ indicator will
inform on which type of censoring has taken place (if so). The nonparametric likelihood
function of the (Ti, Xi, γi) is derived. This likelihood is the key for introducing general
(nonparametric) estimators, and allows for (semi-)parametric inference too, whenever a
(semi-)parametric model is specified. Since the truncation distribution is known, the Ti will
turn out to be irrelevant for the construction of the estimates. We illustrate the new model by
considering several important examples. We also give some outline for asymptotic analysis
in both nonparametric and (semi-)parametric setups. Previous methods for length-biased,
censored data as those discussed in Asgharian et al. (2002) and de Uña-Álvarez (2003a, b)
turn out to be particular cases of the general estimators introduced here. Importantly, it is
shown that ignoring one of the two types of censoring may lead to an underestimation (resp.
overestimation) of survival.

2. THE GENERAL MODEL: NONPARAMETRIC LIKELIHOOD

The general model is defined as follows: X = min(Z,D) and Z = min(Y,C), from which
X = min(Y,C,D); the censoring indicator is

γ =

 1 if X = Y

0 if X = C

−1 if X = D

Here, Y is the time of interest; C is the censoring time which can be regarded as ”indepen-
dent” of the cross-section issue; and D is the censoring induced by the following-up period
(e.g. termination of following-up). Under competing risks, the C variable represents a sec-
ond type of failure (resp. the minimum among the remaining possible failures) which can
be experienced by each subject. According to this, natural assumptions are

Y and C are independent; and T and (Y,C) are independent, (2)

and

D − T and (T,Z − T, δ) are independent conditionally on T ≤ X, (3)

where δ = 1{Y≤C}. We set P (D ≥ T ) = 1, which implies {T ≤ X} = {T ≤ Z}.



Assumption (2) ensures that the distribution function of Y , say F , can be recovered from
that of the conditional vector (Z, δ) | T ≤ Z, provided that the distribution function of T ,
say L, is specified. Indeed, the cumulative hazard rate of F satisfies

ΛF (y) ≡

∫ y

0

dF (u)

1− F (u−)
=

∫ y

0

dH∗1(u)

L(u)CL(u)
, where CL(y) =

∫ ∞

y

dH∗(u)

L(u)
, (4)

and where H∗(y) = P (Z ≤ y | T ≤ Z), H∗1(y) = P (Z ≤ y, δ = 1 | T ≤ Z), see de
Uña-Álvarez (2003a). On the other hand, assumption (3) is needed when recovering H∗ and
H∗1 from the (Ti, Xi, γi) (actually, as mentioned above, the Ti will be no longer useful to
this aim).

Under (2)-(3), the full likelihood of the available data is as follows (check):

Ln =
n∏
i=1

{
dH∗1(Xi)

1{γi=1}dH∗0(Xi)
1{γi=0}

[∫ ∞

Xi

dH∗(u)

L(u)

]1{γi=−1} dL(Ti)

L(Xi)
1{γi �=−1}

}
×

×
n∏
i=1

{
[1−R∗((Xi − Ti)−)]

1{γi �=−1} dR∗(Xi − Ti)
1{γi=−1}

}
,

where H∗0(y) = P (Z ≤ y, δ = 0 | T ≤ Z) and R∗ denotes the conditional distribution
function of D − T given T ≤ X. Now, for introducing length-bias, we assume that the
truncation time is uniformly distributed on some time interval which contains the support
of Z. Provided that R∗ contains no information on F , we come up with

Ln ∝
n∏
i=1

{
dH∗1(Xi)

1{γi=1}dH∗0(Xi)
1{γi=0}

[∫ ∞

Xi

dH∗(u)

u

]1{γi=−1}}
. (5)

In particular, it is seen that Ln is essentially free of the truncation times. This likelihood
collapses to that in Asgharian et al. (2002) in the case P (γ = 0) = 0. Set

(
H∗1
n , H∗0

n

)
for the

maximizer of (5). When P (γ = −1) = 0, this pair
(
H∗1
n , H∗0

n

)
is the key for the construction

of a Nelson-Aalen type estimator for ΛF , see de Uña-Álvarez (2003a). In the general case,
similar arguments are possible; use equation (4) and the uniformity on L to introduce the
natural empirical hazard

ΛF,n(y) =

∫ y

0

dH∗1
n (u)

uCn(u)
, where Cn(y) =

∫ ∞

y

dH∗
n(u)

u
, (6)

and where H∗
n = H∗1

n + H∗0
n . The (unique) distribution function associated to ΛF,n is a

natural, fully nonparametric estimator for F . Similar arguments lead to an estimator for
the cumulative hazard of the censoring time C.

In order to illustrate how a single-censoring model may lead to biased estimates, con-
sider the case in which Y and C are exponentially distributed with parameters λ1 and λ2
respectively. Then, the maximizer of the likelihood (5) as a function of λ1 and λ2 is (check)

λ̂1 =
n1(n1 + n0 + n)

n(n1 + n0)Xn

, λ̂2 =
n0(n1 + n0 + n)

n(n1 + n0)Xn

,

where n1 and n0 indicate the number of cases with Xi = Yi and Xi = Ci, respectively,

and Xn stands for the sample mean of the Xi. The quantity λ̂
−1

1 consistently estimates the
expectation of Y under the exponential assumption. If censoring is simply interpreted as



induced by the following-up (Asgharian et al. (2002)), new values n′
1
= n1, n

′
0
= 0, n′ = n

arise, for which λ̂
′

1 > λ̂1 (underestimation of the mean survival time). Similarly, if both
censoring variables are identified as independent of the cross-section issue (de Uña-Álvarez

(2003a)), the new values n∗
1
= n1, n

∗
0
= n − n1, n

∗ = n lead to λ̂
∗

1 < λ̂1 (overestimation
of survival). To get a rough idea of what is going on, consider a situation with 33% of
uncensored individuals, and 33% of censored spells with γ = 0. Then, the (consistent)

empirical average duration is 1.6 times the duration λ̂
′−1

1
, and 0.8 times the duration λ̂

∗−1

1
.

Then, correctly accounting for both types of censored individuals may be crucial.

3. SEMI-PARAMETRIC ESTIMATION

Introduce now p(y) = P (δ = 1 | Z = y). This function play a central role in the context
of informative censoring models, see Dikta (1998). Under (2)-(3) it is seen that

p(y) = P (δ = 1 | Z = y, T ≤ X) = P (γ = 1 | γ �= −1, X = y, T ≤ X).

Hence, this function can be estimated nonparametrically from the available information.
Interestingly, the likelihood (5) can be written as

Ln ∝
n∏
i=1

{
dH∗(Xi)

1{γi �=−1}

[∫ ∞

Xi

dH∗(u)

u

]1{γi=−1}}
×

×
n∏
i=1

{
p(Xi)

1{γi=1} [1− p(Xi)]
1{γi=0}

}
≡ Ln1 ×Ln2.

The factor Ln1 formally equals the likelihood in Asgharian et al. (2002); the difference is in
that Ln1 depends, rather on the truncated distribution function of the Y , on that of the Z.
Both Ln1 and Ln2 can be maximize independently, as functions of H∗ and p, respectively.
Of course, maximization of Ln1 leads to the empirical H∗

n introduced in Section 2. Note
that each pair (H∗, p) determines a unique conditional distribution for (Z, δ) | T ≤ Z.

An important semi-parametric submodel is obtained when assuming a special parametric
form on p. There is some motivation for considering a constant value for p, say p(.) ≡ θ (see
Gather and Pawlitschko (1998)). Under continuity, this is equivalent to assuming that Z
and δ are independent random variables. In such a case, it is easily seen that the maximizer
of Ln2 becomes

θn =
n1

n1 + n0

where n1 and n0 are as in Section 2. Furthermore, the NPMLE of F equals

Fn(y) = 1− (1−Hn(y))
θn , (7)

where

Hn(y) =

∫ y
0
u−1H∗

n(du)∫∞
0
u−1H∗

n(du)
.

This Fn is an ACL-type estimator, see Dikta (1998), although length-biasing and censoring
by D heavily complicates the nature of this empirical. The asymptotic analysis of Hn can be



performed by following the arguments in Asgharian et al. (2002). Given the simplicity of Fn
as a function of Hn and θn, obtaining the results correponding to (7) is then straightforward.

If p is assumed to belong to a parametric family of regression curves, say {p(.; θ)}, where
θ ∈ Θ ⊆ R

q, semi-parametric estimation is possible too. As above, the θ parameter is
estimated through the maximization of the resulting Ln2, that is

n∏
i=1

{
p(Xi; θ)

1{γi=1} [1− p(Xi; θ)]
1{γi=0}

}
.

Put θ̂ for the maximizer of this product. Now, consider the equation

ΛF (y) =

∫ y

0

p(u)dH∗(u)

uC(u)
, where C(y) =

∫ ∞

y

dH∗(u)

u
,

which immediately follows from (4) under length-bias. Define the natural semi-parametric
estimator for the cumulative hazard

ΛSP
F,n(y) =

∫ y

0

p(u; θ̂)dH∗
n(u)

uCn(u)
, (8)

where Cn is defined in (6). Again, the distribution function associated to ΛSP
F,n is an esti-

mator for F . This is an adaptation to length-biasing and further censoring of the methods
proposed by Dikta (1998). Semi-parametric methods give estimators more efficient than
purely nonparametric empiricals, provided that the parametric family of regression curves
is correctly specified.

We mention that an estimator of type (8) with a nonparametric smoother of p in the

place of p(.; θ̂) is possible too. Some benefits of this method when compared to purely
nonparametric ones are expected, similarly as in previous works on presmoothing for Kaplan-
Meier estimation, see Jácome and Cao (2002) for details.

4. FULLY PARAMETRIC ANALYSIS

Consider now that F is assumed to belong to a parametric family of distribution functions
{Fθ(.)}, where θ ∈ Θ ⊆ Rs, and that the distribution function G of C belongs to the family
{Gν(.)}, where ν ∈ Λ ⊆ Rt. Then, the goal is the estimation of the vector θ (resp. ν) from
the available data. Application of the likelihood (5) gives

Ln ∝
1

µ(θ, ν)n

n∏
i=1

{
[fθ(Xi)(1−Gν(Xi))]

1{γi=1} [(1− Fθ(Xi))gν(Xi)]
1{γi=0} ×

×

[∫ ∞

Xi

(1−Gν(u))fθ(u)du+

∫ ∞

Xi

(1− Fθ(u))gν(u)du

]1{γi=−1}}
,

where fθ(.) and gν(.) denote the probability density functions associated to Fθ(.) and Gν(.),
respectively, and where

µ(θ, ν) =

∫ ∞

0

u(1−Gν(u))fθ(u)du+

∫ ∞

0

u(1− Fθ(u))gν(u)du

stands for the expectation of Z. Typically, estimation of (θ, ν) will be carried out by solving
the system of s+ t equations

∂ lnLn
∂θ

= 0,
∂ lnLn
∂ν

= 0.



Asymptotic analysis of the resulting estimators can be performed in the usual way, under a
number of technical conditions on the involved functions and parametric spaces. An example
of this fully parametric approach has been considered in Section 2 (exponentially distributed
times).

5. CONCLUSIONS

A new general model for left-truncated, right-censored data has been proposed. The
model is suitable for data sampled by cross-section. The nonparametric likelihood function
has been obtained, and efficient estimation of survival has been introduced under a length-
bias assumption. The model allows for several types of censoring, such as that induced by
following-up or that coming from the presence of competing risks. Distinguishing among this
censoring types is crucial in order to avoid inconsistencies. Nonparametric, semi-parametric,
and fully parametric analysis have been considered. The introduced model and estimation
methods extend previous proposals under censoring and length-bias.
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