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RESUMEN

Data collected by statistical agencies may contain inconsistences caused by mis-
takes made during the acquiring, transcription and coding process. The opti-
mization problem arising when an statistical agency must modify a microdata to
guarantee that the records satisfy a set of rules, known as edits, is approached.
Indeed, before using a collection of data records to infer statistical properties
of some groups of responders, the agencies must check and possibly correct the
consistence of the collected data. To this end, the edits must be tested on each
record and whenever a record does not satisfied all the edits the agency must
determine the fields in the record to be modified, as well as impute the new
values. Among all the possible solutions, the statistical agency is interested in
finding one concerning with the minimum number of fields to be modified, thus
leading a combinatorial optimization problem known as Editing-and-Imputation
Problem. An Integer Linear Programming model for the particular case in which
the edits are linear constraints is proposed, and solving through cutting-plane
approaches. The new proposals are compared to other previous published arti-
cles in literature and tested on benchmark instances. The overall performances
of the new algorithms succeeded solving hard instances up to 100 variables and
50 edits about one minute of a PC.
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1. INTRODUCTION

Data collected by statistical agencies may contain errors because questions have been misun-
derstood or mistakes have been made during the transcription and coding process. Therefore,
since it may be impossible to get back to the original source, detection and correction of
such errors becomes a necessary task before start data processing, in order to improve the
integrity and quality of decision made on the basis of this information. The task of identify-
ing records containing errors and the specific fields causing these errors is known as the data
editing problem, and the task of changing these fields in order to correct the errors is known
as imputation. Both are typically carried out by experts, which consumes a large amount
of resources of the statistical agencies. Hence, producing automatic techniques which help
these experts with such a complex work becomes an interesting goal.

More precisely, the microdata collected by the agencies consists of a set of records, each
containing the answers to a set of queries. Every value in a record is known as field, and it
contains either a discrete or a continuous value. Discrete values correspond to categorical



queries (e.g., Marital Status), while continuous numbers to quantitative queries (e.g., Age).
A microdata may contain both data type.

To introduce the problem let us suppose to have n queries, indexed by a finite set
I := {1, . . . , n}. Each record a is a (n × 1) vector, say a = [ai : i ∈ I], whose component
ai is an entry in field i. Correctness of a record is given by a set E of consistence rules
known as edits. This set is associated to a set PE of all potential valid records. Given a set
E of m edits, indexed by J := {1, . . . ,m}, a record a is said to be consistent if a ∈ PE . If
microdata record a were inconsistent according to the edit set the aim of the data editing
and imputation would be to modify the fewest possible items of data in order to make it
consistent [3]. However, our goal in this paper shall be to minimize the weighted number of
fields that would have to be changed into a∗ through imputation to satisfy the set of edits.
This problem is known as the Minimum Weighted Fields to Impute problem (MWFI) and
it can be formulated using a 0-1 variable xi and a variable yi for all i ∈ I:

min
∑

i∈I

wixi

subject to
y ∈ (P )E

xi :=

{
1 if ai 6= yi

0 otherwise
for all i ∈ I (1)

where the variable xi (i ∈ I) takes the value 1 if and only if the field i has to be modified to
make y a valid record. Since the MFWI is not suitable to be solvable a mathematical pro-
gramming approach, several articles in literature [3, 4, 5, 7, 8] have considered the following
0-1 integer Linear formulation (SCP):

min
∑

i∈I

wixi (2)

subject to
∑

i∈Ik⊆I

xi ≥ 1 for all k ∈ K ⊆ E (3)

xi ∈ {0, 1} for all i ∈ I, (4)

where each constraint (3) is associated with an edit from the set K ⊆ E of edits failed by a.
The set Ik ⊆ I associated to edit k ∈ K represents the candidate set of fields to be modified
in order to satisfy this edit. Hence the constraint (3) imposes that at least one of those fields
must be modified if the current record a does not satisfy edit k.

Obviously, each optimal solution for MWFI satisfies constraints (3), since they state that
at least one of its fields must be changed for every failed edit. However, Fellegi and Holt [3]
observed that not all solutions for SCP are feasible solutions for MWFI.

Our contribution in this paper is to describe new close related approaches with better
performance in practice. Section presents a simple algorithm for categorical and continuous
data. This algorithm follows a scheme similar to the cutting-plane algorithm proposed in
[4], which differs on the set of generated cuts. Another algorithm close related to the one
proposed in [5] for continuous data and linear edits, is also presented. The new algorithm
has the advantage that the cuts can be generated also from non-integer solution of the set-
covering problem, thus, only a linear program must be solved at each iteration. However, if



the final solution satisfying all the (explicit and implied) edits is non-integer, the approach
applies a branch-and-bound scheme in order to achieve integrability of the variables. The
underlying mathematical model is presented in Section 3.1 and the overall algorithm is
described in Section 3.2. The paper finishes with an extensive computational analysis in
Section 4.

2. GENERAL ALGORITHM

The here discussed scheme can be applied to both types of data, categorical and continu-
ous, and general edits. It is similar to the cutting-plane algorithms described in Garfinkel,
Kunnathur and Liepins [4, 5] and summarized as follows.

Step 0: Let K ⊆ J be the set of edits not satisfied by the record a;

Step 1: Generate a candidate solution solving the SCP. Let x∗ be the optimal integer
solution;

Step 2: Check whether there exists a record y satisfying the edits with yi = ai when x∗i = 0
for i ∈ I. If such record does exist, then stop the procedure: x∗ is the optimal solution
of the problem. Otherwise, add the constraint

∑
i:x∗i =0 xi ≥ 1 to the set-covering

problem, and go to Step 1.

This procedure iteratively strengthen the set-covering problem with additional con-
straints, one at each iteration. Each iteration checks whether the current solution x∗

guarantees the existence of a valid record y such that yi = ai when x∗i = 0, generating
a cutting-plane inequality in the negative case. Since the cutting-plane inequality is not
satisfied by x∗, this procedure computes a different solution of the restricted set-covering
problem in the next iteration. Each inequality imposes that a new field not currently present
in the solution must be modified.

3. ALGORITHM FOR CONTINUOUS VARIABLES AND LINEAR EDITS

New algorithms for the specific scenario in which variables are continuous numbers and
each edit is given for a linear inequality are described in this section. From now on, we
shall assume that each field value ai is a continuous number in a known interval [lbi, ubi].
Moreover, we shall also assume that the explicit edit set E is given by a collection of linear
constraints, and therefore it can be represented by a linear system My ≤ b, where M is a
[m× n] matrix and b is a [m× 1] vector. Under these assumptions, the set of valid records
(P )E is given by the points of the polyhedron

(P )E := {y : My ≤ b, lb ≤ y ≤ ub}.

The next section presents a new mixed integer linear model for MWFI which has the
advantage of exploiting the bounds [lbi, ubi] to link variables xi and variables yi in order to
produce a set of constraints more compact than the SCP model.

3.1 MATHEMATICAL MODEL

A mathematical model for this problem can be written by associating the 0-1 binary variable
xi with certain continuous variable yi denoting the value of the corrected record in the field
i ∈ I as follows.

min
∑

i∈I

wixi, (5)



subject to
∑

i∈I

mijyi ≤ bj for all j ∈ J (6)

ai − (ai − lbi)xi ≤ yi ≤ ai + (ubi − ai)xi for all i ∈ I (7)
xi ∈ {0, 1} for all i ∈ I. (8)

Constraints (6) ensure that the corrected record is in the valid set (P )E , and constraints (7)
guarantee that the field i is not modified unless xi = 1.

The model (5)–(8) is a simple way of writing the non-linear model pointed in, e.g.,
Garfinkel Kunnathur and Liepins [5]. The key point for the new model is the assumption of
having the external bounds lbi and ubi defining the interval [lbi, ubi] of potential values yi

for each field i ∈ I, which is not a hard hypothesis. The next section illustrates this claim
describing a branch-and-cut approach.

3.2 BRANCH-AND-CUT ALGORITHM

We now describe a procedure to implicitly enumerative the solutions of the MWFI by using
the model (5)–(8). An immediate way of proceeding is to apply a general-purpose software
for MILP models. Since the model (5)–(8) is an MILP model, one can alternatively apply
Benders’ Decomposition (see, e.g, [9]) to solve it. Briefly, this method consists in iteratively
solving a master problem defined only by the binary variables and whose constrains are
enlarged at each iteration by solving a subproblem defined by the continuous variables. See,
e.g., Shrijver [9] for details. Let us now describe the procedure in detail.

Suppose we are given with an array x∗ = [xi : i ∈ I]. For simplicity, we will assume that
x∗i ∈ {0, 1}, even if we will observe that this integrality requirement can be relaxed and the
procedure be also applied with a minor modification. We are interested in checking if the
polyhedron

P (x∗) :=
{

y :
∑

i∈I

mijyi ≤ bj , j ∈ J ; ai − (ai − lbi)x∗i ≤ yi ≤ ai + (ubi − ai)x∗i , i ∈ I

}

is empty or not. If yes, then the pattern x∗ is a feasible solution for the MWFI. Otherwise,
there is something wrong with x∗ and we are interested in deriving a linear inequality cutting
off this infeasible solution but not any feasible solution for the MWFI. Having a procedure
to generated such inequality from x∗ means having a cutting-plane procedure to find an
optimal solution of the x∗. If x∗i is not an integer number, then the same mechanism applied
with the only difference that the procedure should continue by fixing the variables with
non-integer values to either zero or one, thus entering in a branching phase. Therefore, the
kernel is the procedure to generate a cut from a non-feasible x∗, which is called separation
problem. For the MWFI it is quite immediate to solve the separation problem by applying
Farkas’ Lemma (see, e.g., [9]) on P (x∗). In fact, this polyhedron is non-empty if and only if

∑

j∈J

αjbj +
∑

i∈I

βi(ai + (ubi − ai)x∗i )−
∑

i∈I

γi(ai − (ai − lbi)x∗i ) ≥ 0 (9)

for all direction of the cone:

C := {(α, β, γ) : MT α + β − γ = 0, α ≥ 0, β ≥ 0, γ ≥ 0}.
By simple operations on (9) we get a valid inequality of a feasible pattern x as follows:

∑

i∈I

[βi(ubi − ai) + γi(ai − lbi)]xi ≥ αT (Ma− b). (10)



Because βi, γi, ubi−ai, ai−lbi are non-negative numbers and because xi must be 0 or 1, then
it is possible to strength these constraints by rounding down a left-hand side coefficient to
the right-hand side whenever it is bigger. As reported in the next section, our computational
experiments proved that this strengthening is very effective for the success of the approach.

Observe that in the particular case of small values of lbi and large values of ubi, the
strengthening operation produces the following set covering constraints:

∑

i∈I′
xi ≥ 1

where I ′ is the set of field indices with a dual variable βi or γi at a positive value, which
is equivalent to the field indices with non-zero value in the array MT α. This is a quite in-
teresting observation since the obtained inequalities coincide with the inequalities generated
by the method proposed by Garfinkel, Kunnathur and Liepins [5]. Still, an improvement of
the here-proposed approach is that it can be also applied when x∗i are non-integer solutions,
which make the approach quite suitable to work in a branch-and-cut framework.

4. PRELIMINARY COMPUTATIONAL EXPERIMENTS

To measure the effectiveness of our proposal compared with other previous works, we
have implemented several algorithms, using the general software CPLEX 8.1 as a framework
for the mathematical models. In particular, we have considered the following algorithms:

Algorithm 1: It is a classical branch-and-bound solver for the mixed integer linear model
(5)–(7), where the bound is computed by solving the linear relaxation.

Algorithm 2: It is the branch-and-cut algorithm described in Section 3.4.

Since there is not a benchmark collection of test-bed instances in the literature, we have
conducted our experiments on three families of instances. The first family are randomly
generated instances described in Ragsdale and McKeown [8]. This instances are generated
as follows. The number of fields is |I| = n = 100, the number of edits is |J | = m = 50, the
weights are all identical (wi = 1 for all i ∈ I), the record values are uniformly generated
in the interval [-100,+100], thus lbi = −100 and ubi = 100 for all i ∈ I, the right-hand
side bj where generated in the interval [0,1000], the elements mij are zero with probability
0.2, and the non-zero values are generated in [1,20] with probability 0.3 and in [-20,-1] with
probability 0.7.

Finally, our last family of instances is a set of artificial instances supplied by US Census
consisting of 10,994 records with 17 fields and two set of edits. The first set of 136 ratio
edits is related to bound of the variables ratio as follows.

lbj ≤ ai

ak
≤ ubj for i, k ∈ I, j ∈ J and i < j,

in which ubj − lbj take values between 10−1 and 107. The second set corresponds to two
balancing edits which have the form ai + ak = al for i, k, l ∈ I.
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