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ABSTRACT

It is known that Kaplan-Meier estimation may be improved via presmoothing
methods. In this work we consider presmoothed least squares estimation for
a regression parameter, when the response is subject to right-censoring. The
approach is that in de Uña-Álvarez (2002). Properties of the proposed estimators
are investigated via simulations.
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1. INTRODUCTION

In Survivial Analysis, one is often interested in a time (hence nonnegative) response, say
Y , which is subject to censoring from the right. If X = (x1, ..., xp)t is a vector of covariates,
the basic regression model is represented as

lnY = f(X; θ0) + ε, (1)

where f(.; θ0) is some smooth function which depends on the ”true” (unknown!) regression
parameter θ0 ∈ Θ ⊂ R

d, and ε is a (usually zero-mean) error term. Due to the log-
transformation for the Y in (1), the function f(.; θ0) is not restricted to take positive values.
The accelerated failure time model, very important in applications, is obtained as a special
case of (1).

As a result of right-censoring effects, rather than a random sample of (X,Y ), one is just
able to observe (X1, Z1, δ1) , ..., (Xn, Zn, δn), iid data with the same distribution as (X,Z, δ).
Here, Z = min(Y,C) is the recorded time, C is the censoring variable, and δ = 1{Y≤C} stands
for a censoring indicator. In censored regression, the goal is the estimation of θ0 from the
(Xi, Zi, δi); several approaches have been investigated to this aim.

A useful model, introduced by Stute (1993), is that based on the assumptions

H1. Y and C are independent;

H2. δ and X are independent conditionally on Y .

Assumption H1 is typical in censored scenarios, while H2 incorporates the covariate vector
in a sensible way. See Stute (1993, 1996, 1999) for further discussion. Note that H1-H2 hold
whenever C is independent of (X,Y ). Under H1-H2, weighted LSE of θ0 is defined through
minimization of

θ �→
n∑
i=1

WKM
i,n

[
lnZi:n − f(X[i:n]; θ)

]2
(2)



where Z1:n ≤ ... ≤ Zn:n are the ordered Zi,

WKM
i,n =

δ[i:n]
n− i+ 1

i−1∏
j=1

[
1−

δ[j:n]
n− j + 1

]
(3)

is the jump size of the Kaplan-Meier estimator at Zi:n, and
(
X[i:n], δ[i:n]

)
stands for the

(X, δ) vector attached to Zi:n. Note that W
KM
i,n = 1/n in the uncensored case. Consistency

and distributional convergence for this weighted LS criterion was established in Stute (1993,
1996) (for a linear f(.; θ0)) and Stute (1999) (nonlinear case).

Set m̃(z) = P (δ = 1 | Z = z), the conditional probability of uncensoring given Z = z,
and put m̃n(z) for an estimator of m̃(z) based on the (Zi, δi)’s. Improved estimation of the
marginal df of Y is obtained by substituting m̃n(Zi:n) for δ[i:n] in (3), provided that the
smoother m̃n is properly chosen. ”Presmoothing the Kaplan-Meier” just means that such a
substitution has taken place. Presmoothing ideas were introduced by Dikta (1998) under a
parametric assumption on m̃. Jácome and Cao (2002) provide important results when using
a nonparametric fit to m̃. However, the presence of covariates was not considered in these
works.

Presmoothed Kaplan-Meier estimation with covariates was investigated in de Uña-Álvarez
(2002). Introduce the presmoothed Kaplan-Meier weights as

Wi,n(mn) =
mn(X[i:n], Zi:n)

n− i+ 1

i−1∏
j=1

[
1−

mn(X[j:n], Zj:n)

n− j + 1

]
,

where mn(x, z) stands for an estimator of m(x, z) = P (δ = 1 | X = x, Z = z) based on the
available (Xi, Zi, δi). The associated weighted LSE of θ0, say θn, is defined as the minimizer
of

θ �→
n∑
i=1

Wi,n(mn)
[
lnZi:n − f(X[i:n]; θ)

]2
. (4)

The connection between the weights in (4) and those in (2) is that Wi,n(mn) collapses to
WKM

i,n when severely undersmoothing the estimator mn.

The consistency of θn follows from that of general integrals
∫
ϕdF̂PKM

X,Y , where

F̂PKM
X,Y (x, y) =

n∑
i=1

Wi,n(mn)1{X[i:n]≤x,Zi:n≤y}

is an estimator of the multivariate df of (X,Y ). Assumptions H1-H2 are crucial to this
aim. Of course, some assumption on the smoother mn is needed too. Roughly speaking,
uniform strong convergence of mn is enough for guaranteeing θn → θ0 almost surely. See de
Uña-Álvarez (2002) for details.

In the present work, we investigate via simulations the performance of the presmoothed
weighted LSE θn. Comparison with the minimizer of (2) is included. Parametric and
nonparametric (kernel) estimates for m will be considered, leading to parametric and non-
parametric presmoothed estimators for θ0, respectively. As in previous works without co-
variates, it will be seen that presmoothing leads in general to better estimates. Moreover,
presmoothing may result in fairly good estimators even when the parametric model (resp.
the bandwidth) form is not correctly chosen. We report some of these simulations in Section
2.



There exists some previous research on presmoothing methods with covariates under the
alternative (conditional) model

H*. Y and C are independent conditionally on X.

Veraverbeke and Cadarso-Suárez (2000) considered the case in which m(x, z) is free of z,
providing a conditional version of the Koziol-Green censorship model. Nonparametric esti-
mation of the conditional df of the Y was investigated in the referred paper. Also, Yuan
(2002) introduced parametric presmoothing under H*, and proposed efficient estimation of
the regression parameter in the scope of the Cox model. Model assumptions H1-H2 consid-
ered in this note lead to a quite different approach for regression.

2. SOME SIMULATIONS

We have considered a basic regression model as (1), where f(x; θ0) = −xtθ0 is a lin-
ear function, and the (normalized) error term ε/σ follows an extreme value distribution,
independent of the covariate vector. As a result, the conditional df of Y given X = x is
Weibull(α1(x), β1), with α1(x) = exp(xtθ0) and β1 = 1/σ. We have considered a single,
real-valued covariate X, uniformly distributed on the unit interval. The resulting regression
model is

lnY = −θ10 − θ20X + ε.

Censoring was introduced following a Weibull(α2, β2) distribution, with α2 = exp(θ10)
and β2 = β1, independent of (X,Y ). In this situation, the function m follows the logistic
specification

m(x, z) =
exp(β1θ20x)

1 + exp(β1θ20x)
. (5)

The proportion of uncensored responses results in

E(δ) =
1

β1θ20
ln

[
1 + exp(β1θ20)

2

]
.

We have considered the cases β1 = 1 and β1 = 2. Given β1, the value of the slope θ20
was fixed in order to obtain five censoring percentages, about 10, 28, 45, 50 and 62% of
censoring. The intercept θ10 was chosen to be zero. Sample sizes 25, 50, 100 and 200 were
considered. For each case, 1,000 trials were performed.

Mean squared errors (MSE) of estimators for θ0 = (θ10, θ20)
t along the 1,000 trials were

computed. We considered three estimation methods. First, the minimizer of the weighted
LS criterion (2) was computed. This involves the ordinary Kaplan-Meier weights. Then,
parametric presmoothing was considered, under the logistic assumption

m(x, z;β0) =
exp(β10 + β20x+ β30z)

1 + exp(β10 + β20x+ β30z)
. (6)

Note that the true m given in (5) belongs to this parametric family. In this case, the
smoother mn was chosen as the maximizer of the conditional likelihood

Ln(β) =
n∏
i=1

m(Xi, Zi;β)
δi [1−m(Xi, Zi;β)]

1−δi . (7)



Finally, nonparametric presmoothing was introduced. Nadaraya-Watson type regression
with (bivariate) product kernel function was considered to this aim. The Epanechnikov
kernel with smoothing parameter h = 0.3 was used in all the cases. Both parametric and
nonparametric smoothers for m were used in order to get presmoothed LSE for θ0 via (4).
The results for the estimator of the slope θ20 are displayed in Table 1. Empty cells correspond
to situations in which the maximization of (7) gave no solution. The intercept estimator
behaved quite similarly, and the corresponding results will be reported elsewhere.

β1 = 1 β1 = 2
n CP KM PP NP KM PP NP

25

10%
28%
45%
50%
62%

- - -
- - -
1.8159 1.0189 1.6014
2.1077 1.0075 1.7839
3.9718 1.4843 3.0948

- - -
- - -
0.5386 0.2642 0.4306
0.5274 0.2930 0.4447
0.9365 0.3643 0.7255

50

10%
28%
45%
50%
62%

- - -
0.6703 0.5258 0.6173
0.9585 0.4888 0.8318
1.1448 0.5137 1.0160
1.9766 0.8892 1.7608

- - -
0.1730 0.1279 0.1513
0.2522 0.1301 0.2117
0.2858 0.1373 0.2361
0.4681 0.2069 0.3896

100

10%
28%
45%
50%
62%

0.2499 0.2507 0.2731
0.3670 0.2678 0.3249
0.5425 0.2821 0.5029
0.6264 0.2812 0.5890
1.2059 0.5206 1.1134

0.0641 0.0611 0.0685
0.0854 0.0622 0.0751
0.1323 0.0756 0.1124
0.1592 0.0772 0.1311
0.2773 0.1310 0.2349

200

10%
28%
45%
50%
62%

0.1118 0.1085 0.1323
0.1706 0.1370 0.1596
0.2943 0.1569 0.2710
0.3198 0.1692 0.2898
0.7152 0.3512 0.6966

0.0306 0.0284 0.0358
0.0397 0.0298 0.0362
0.0758 0.0409 0.0619
0.0878 0.0401 0.0735
0.1870 0.0885 0.1593

Table 1. Mean squared error of LSE for the slope along 1,000 trials, with ordinary
Kaplan-Meier (KM), parametric presmoothed (PP), and nonparametric presmoothed (NP)

weights.

From Table 1 it can be seen that the MSE decreases as the sample size increases. Also,
the error is increasing as a function of the censoring percentage (CP). When comparing the
three estimation techniques, it should be noted that parametric presmoothing results in a
lower MSE (this is particularly true under heavy censoring). Importantly, nonparametric
presmoothing outperforms in general ordinary Kaplan-Meier LS, even when the bandwidth
for mn is not correctly chosen (it should be a decreasing function of n). Hence, wrong
presmoothing still may lead to sensible estimators.

This robustness property of nonparametric presmoothing is shared by its parametric
analogue (as previously noted by other authors). In order to illustrate this, Table 2 reports
(for sample size n = 100) the MSE of the slope estimators considered above, when the
censoring variable is generated according to a uniform distribution on (0, 3). In this case,
the function m is no longer (5), rather being equal to

m(x, z) =
exp(β1θ20x)

(β1z
β1−1(3− z))

−1
+ exp(β1θ20x)

.



Hence, parametric presmoothing in initially misleaded by the (untrue) logistic specification
(6). Given values for β1 and θ20, the censoring proportion is obtained as

Γ(1/β1)

3β2
1θ20

∫ exp(β1θ20)

1

x−1−1/β1(1− e−3x1/β1 )dx

if θ20 �= 0, and by

1

3

∫ 3

0

e−x
β1
dx

if θ20 = 0. As a result, for the special values of these parameters in Table 2, the corresponding
censoring percentages are about 5, 14, 27, 32 and 46% for β1 = 1, and about 8, 18, 26, 30,
and 34% for β1 = 2. As in Table 1, we see that the parametric presmoothed LSE is the
best estimator (in the sense of the MSE). However, we observed that ordinary Kaplan-Meier
weights do it slightly better than presmoothed ones when estimating the intercept. Further
discussion and more simulations will be reported elsewhere.

β1 = 1 β1 = 2
β1θ20 KM PP NP KM PP NP
7
2
.4
0
-1

- - -
0.2340 0.2030 0.2191
0.3192 0.2209 0.2930
0.3595 0.2170 0.3247
0.7349 0.4229 0.6692

- - -
0.0616 0.0572 0.0576
0.0704 0.0644 0.0692
0.0823 0.0695 0.0820
0.1032 0.0770 0.1001

Table 2. Mean squared error of LSE for the slope along 1,000 trials of size n = 100, with
uniform censoring distribution.

3. ACKNOWLEDGEMENTS

First author was supported by the Grants PGIDIT02PXIA30003PR and BFM2002-
03213.

4. REFERENCES

Dikta, G. (1998). ”On semiparametric random censorship models”. Journal of Statistical
Planning and Inference 66, 253-279.
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