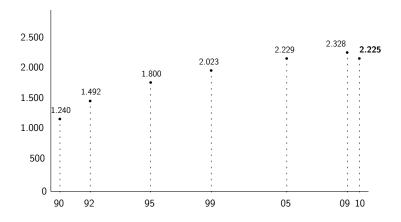
La matemática discreta y el intercambio de riñones

Jordi Massó Universitat Autònoma de Barcelona y Barcelona GSE

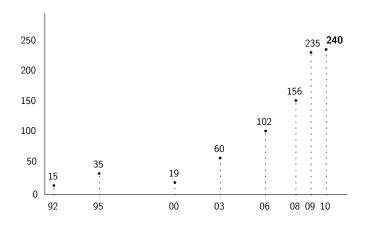
X Congreso Galego de Estatística e Investigación de Operacións

3 de novembro de 2011

Objetivo

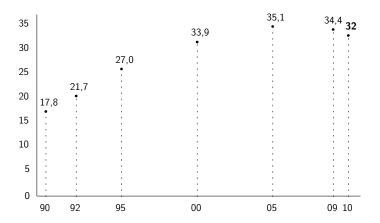

- Describir el problema de los trasplantes cruzados de riñones de donantes vivos y el uso de un algoritmo de la matemática discreta con el fin de proponer mecanismos de asignación de riñones a pacientes con propiedades deseables.
- Basado en el artículo: J. Massó, "El intercambio de riñones y la matemática discreta". Un paseo por la Geometría, curso 2009-2010. Facultad de Ciencias de la Universidad del País Vasco.

- La insuficiencia renal terminal se produce cuando los riñones realizan menos del 10% de su función.
- Dos tratamientos:
 - Diálisis: la calidad de vida se ve significativamente disminuida.
 - Trasplante de riñón: el mejor tratamiento disponible.
- Dos tipos de trasplantes:
 - De donante vivo.
 - De donante en muerte encefálica.


- Los primeros trasplantes fueron de donante vivo.
 - El primer trasplante de riñón con éxito se realizó el 23 de diciembre de 1954 en el Peter Ben Brigham Hospital de Boston,
 - entre dos gemelos monocigóticos para evitar los problemas relacionados con la reacción inmune y
 - lo realizaron los doctores John Merrill y Joseph Murray (que recibió por ello el Nobel de Medicina en 1990).
 - En España el primer trasplante de riñón se realizó el 18 de abril de 1965 por los doctores Gil Vernet y Antoni Caralps en el Hospital Clínico de Barcelona.

- En España en 2010 habían 4.434 pacientes en lista de espera (4.301 en 2008 y 4.552 en 2009).
 - Período de espera: promedio de 18 meses (en otros países de hasta 3 años).
 - Algunos pacientes mueren (alrededor del 8% en España, la tasa de mortalidad más baja del mundo), o su enfermedad empeora y dejan de ser potenciales receptores de riñón.
- Escasez de órganos (en los últimos 20 años, ha habido cada año más de 3.800 pacientes en lista de espera).

Transplantes renales en España


Trasplantes renales de donante vivo en España

- En España, la proporción de trasplantes de donantes vivos ha crecido y son el 10% del total.
- En el mundo, el 40% de los riñones trasplantados procede de donantes vivos (el 50% en Estados Unidos, el 34% en el Reino Unido, ...).
- España es uno de los países con una tasa mayor de donación de órganos en muerte encefálica. Por ello sorprende que sólo el 10% de trasplantes sean de donantes vivos.
- En 2009, hubieron 1.606 donantes, 34'4 por millón de habitantes (32 en 2010).
 - Cantabria: 61'0.
 - Catalunya: 35'4.
 - Extremadura (la más baja): 27'3.
 - Galicia: cerca de la media (en 2010, un poco por debajo).

Donantes de órganos en España

Tasa de donantes por cada millón de habitantes

- La calidad y la probabilidad de éxito de un trasplante de riñón de donante vivo es mayor que el de donante en muerte encefálica.
- La probabilidad de que el riñón trasplantado sobreviva 5 años es de
 - 0'87 si viene de donante vivo.
 - 0'80 si viene de donante muerto.
- La probabilidad de que el receptor sobreviva 5 años es de
 - 0'93 si viene de donante vivo.
 - 0'86 si viene de donante muerto.

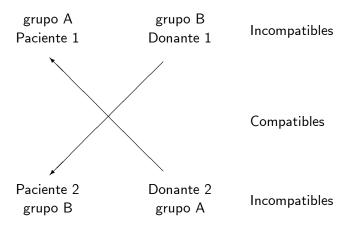
- La donación de riñón entre vivos consiste en que el paciente recibe, siempre que sea compatible, uno de los dos riñones de un donante (familiar o amigo).
- Si el riñón no es compatible, el trasplante no es posible y el riñón del donante desaparece del sistema.
- No obstante, la donación directa puede no ser suficiente.
 - De hecho, se ha estimado que aproximadamente un tercio de los pacientes con un familiar o amigo donante son excluidos del sistema por distintas incompatibilidades.
- Hasta hace bien poco, no había ningún sistema para aprovechar los donantes rechazados, los cuales eran simplemente mandados a casa.
- En 1986, el médico F.T. Rapaport fue el primero en proponer los trasplantes cruzados de riñones de donantes vivos.

grupo A Paciente 1 grupo B Donante 1

In compatibles

Paciente 2 grupo B

Donante 2 grupo A


Incompatibles

grupo A grupo B
Paciente 1 Donante 1 Incompatibles

Paciente 2 grupo B

Donante 2 grupo A

In compatibles

 Recientemente, distintas zonas y centros de Estados Unidos (por ejemplo, Alabama, New England, Ohio y el Johns Hopkins Hospital) y de Europa (por ejemplo, el Reino Unido y España (desde 2008)) han empezado a centralizar la información sobre las parejas paciente-donante incompatibles para poder realizar sistemáticamente trasplantes cruzados de riñones de donantes vivos.

- El 25 de Febrero de 2003 el Massachusetts General Hospital realizó por primera vez un trasplante cruzado.
 - Dos matrimonios, uno de New Hapshire y el otro de Connecticut.
 - Las parejas tenían grupos sanguíneos incompatibles pero cada marido era compatible con la otra esposa.
- En Julio de 2003 el Johns Hopkins Hospital realizó un ciclo de trasplantes cruzados que involucraba a tres parejas.
 - Dos amigos, incompatibles por sus tipos de antigenes, dos novios, incompatibles por su grupo sanguíneo, y dos hermanas, incompatibles por sus tipos de antigenes.

- El 14 de Noviembre de 2006, el Johns Hopkins Hospital realizó un ciclo de trasplantes cruzados que involucraba a 5 parejas.
 - Los pacientes eran 3 hombre y dos mujeres y los 5 donantes eran mujeres, una de ellas una donante altruista ('buen samaritano').
 - Más de 100 profesionales médicos fueron necesarios para realizar simultáneamente las 10 intervenciones quirúrgicas (simultaneidad!).
- En el Reino Unido se realizan trasplantes cruzados (de como máximo 3 parejas) sistemáticamente desde 2007.
- En 2009 se realizó en España el primer trasplante cruzado; los dos trasplantes renales tuvieron lugar en los Hospitales Clínic de Barcelona y Virgen de las Nieves de Granada entre dos parejas de Aragón y de Andalucía.
- En 2011 se realizó el segundo, en el Hospital de la Paz de Madrid y en la Fundación Puigvert de Barcelona.

Objetivo

- Describir las contribuciones de un grupo de economistas que, adaptando algoritmos de matemática discreta ya propuestos para resolver problemas abstractos de asignación de agentes a bienes indivisibles, permiten ordenar de forma eficiente los trasplantes cruzados de riñones de donantes vivos teniendo en cuenta, a su vez, las restricciones derivadas de la especificidad y complejidad de los trasplantes de riñón.
 - Principalmente Alvin Roth, de Harvard University, y Tayfun Sönmez y Utku Ünver, de Boston College.

Estructura de la presentación

- El riñón.
 - Función y fallo renal.
 - El trasplante de riñón y sus incompatibilidades básicas.
 - Grupo sanguíneo.
 - Tipo de tejido (HLA).
- Matemática discreta.
 - Problema de asignación de agentes a objetos indivisibles.
 - El Núcleo.
 - El algoritmo TTC de Gale.
 - Ejemplo.
 - Otras propiedades deseables.
- Trasplantes cruzados de riñones de donantes vivos.
 - Adaptación del algoritmo TTC de Gale.
 - Simulaciones.
- Observaciones finales.
 - Donantes altruistas, importancia del HLA, no manipulabilidad y aspectos dinámicos.

El riñón: función y fallo renal

- Sin riñones la vida no es posible.
- El fallo renal es la pérdida de la habilidad de los riñones para realizar sus funciones (filtra la sangre; regula el agua del cuerpo, el pH de la sangre y muchos minerales; produce hormonas, vitaminas y proteínas; etc).
- El fallo puede ser desde una leve disfunción a uno grave.
- La insuficiencia renal terminal se produce cuando los riñones realizan menos del 10% de su función.
- Los síntomas pueden aparecer repentinamente cuando el fallo ya es terminal.
- Las dos causas del fallo renal crónico más comunes son la diabetes y la hipertensión.

 El éxito de un trasplante de riñón depende fundamentalmente de las compatibilidades genéticas (grupos sanguíneos y tipos de tejidos) entre el paciente y el donante, de la edad del riñón, del peso, etc.

- El grupo sanguíneo de un ser humano viene determinado por las características genéticas de sus progenitores.
- El grupo sanguíneo depende de dos proteínas, llamadas A y B, que pueden o no estar presentes en la sangre y que determinan los cuatro grupos sanguíneos: O, A, B y AB.
- La regla que determina las incompatibilidades de grupo sanguíneo es que no es posible recibir una proteína que no se tenga.
 - Los pacientes del grupo O pueden recibir sólo riñones del grupo O.
 - Los pacientes del grupo A pueden recibir riñones de los grupos O y A.
 - Los pacientes del grupo B pueden recibir riñones de los grupos O y B.
 - Los pacientes del grupo AB pueden recibir los riñones de todos los grupos.

- La segunda característica relevante es el tipo de tejido, llamado HLA (por la abreviación del inglés de 'Human Leukocyte Antigen').
- El complejo de genes HLA del cromosoma 6 del ser humano codifica proteínas que son cruciales para el sistema inmunológico y que se encuentran en la superficie de la mayoría de las células—y en particular, en los glóbulos blancos (o leucocitos) de la sangre.
- Cumplen con la función de diferenciar lo propio de lo extraño, y generan la respuesta inmune que defiende el organismo de los agentes infecciosos.
- Para dar respuesta a la diversidad de agentes infecciosos el HLA se ha diversificado a lo largo del tiempo, hasta el punto de que prácticamente cada ser humano tiene un HLA distinto.

- A efectos de rechazo, hay seis tipos de proteínas relevantes (cada una puede tener centenares de características distintas), determinadas genéticamente, y que varian considerablemente (con la raza, por ejemplo).
- Evidencia clínica y empírica demuestra que cuando el donante y el receptor comparten las características de las seis proteínas—evento extremadamente improbable—, se minimiza el riesgo de rechazo del injerto mientras que éste aumenta con el número de disparidades.
- A pesar de que haya una buena compatibilidad de HLA, puede ocurrir que el receptor tenga anticuerpos a las proteínas del donante; por ejemplo, en una pareja con un hijo común, la madre puede generar durante el embarazo anticuerpos del padre, haciendo esta clase de donaciones, aunque muy naturales, menos probables.
- Es importante que exista una buena compatibilidad entre el paciente y el donante porque permite un tratamiento inmunodepresor posterior menos agresivo y con menos efectos secundarios.

Matemática discreta (Shapley y Scarf, JME 1974)

- $A = \{a_1, ..., a_n\}$: conjunto de agentes (pacientes).
- $O = \{o_1, ..., o_n\}$: conjunto de *objetos* indivisibles (riñones de donantes).
- Asignación: función biyectiva $\alpha: A \longrightarrow O$.
- Asignación inicial de agentes a objetos $\mu: A \longrightarrow O$ que tiene la propiedad que $\mu(a_i) = o_i$ para todo i = 1, ..., n.
 - μ describe todas n parejas de paciente-donante $(a_1, o_1), ..., (a_n, o_n)$ presentes en el problema de asignación.
 - De momento, supondremos que para todo i = 1, ..., n, el paciente a_i es incompatible con el riñón del donante o_i; si no lo fueran, se realizaría el trasplante entre ellos y la pareja no estaría presente en el problema de asignación.
- Cada agente $a \in A$ tiene una *preferencia* estricta (un orden o ranking estricto) P_a sobre el conjunto de objetos O.

• Ejemplo (n = 6)

- Un perfil $P=(P_a)_{a\in A}$ es una lista de preferencias, una para cada agente. Al cuarteto (A,O,P,μ) le llamaremos un problema (de asignación).
- Como A, O y μ estarán fijados, podemos identificar el conjunto de problemas con el conjunto de perfiles \mathcal{P} .

- Sea $\mathcal{A} = \{\alpha : A \to O \mid \alpha \text{ es biyectiva}\}$ el conjunto de asignaciones.
- Un $mecanismo\ \varphi: \mathcal{P} \to \mathcal{A}$ es un método (o criterio) sistemático que propone, para cada perfil $P \in \mathcal{P}$, una asignación $\varphi[P] \in \mathcal{A}$.
 - Es decir, $\varphi[P]:A\to O$ es una descripción de qué riñón recibe cada paciente,
 - interpretando que $\varphi[P](a_i) = o_i = \mu(a_i)$ significa que el paciente a_i no recibe ningún riñón en la asignación $\varphi[P]$.
- Pero nos gustaría que la propuesta tuviera buenas propiedades, relativas al perfil P.
- Para definirlas, dados P_a y $o, o' \in O$, decimos que o es al menos tan bueno para a que o', oR_ao' , si o = o' o oP_ao' .

• Una asignación $\alpha: A \longrightarrow O$ es individualmente racional en el perfil P si para cada $a \in A$,

$$\alpha(a)R_a\mu(a)$$
.

• Una asignación $\alpha:A\longrightarrow O$ es *eficiente* en el perfil P si no existe ninguna otra asignación ν tal que para todo $a\in A$,

$$\nu(a)R_a\alpha(a)$$

У

$$\nu(a')P_{a'}\alpha(a')$$

para algún $a' \in A$.

• Un mecanismo $\varphi: \mathcal{P} \to \mathcal{A}$ es individualmente racional y eficiente si para todo $P \in \mathcal{P}$, la asignación $\varphi[P]$ es individualmente racional y eficiente, respectivamente.

Definición 1 Una asignación $\alpha:A\longrightarrow O$ está en el *Núcleo* del problema (A,O,P,μ) si no existen ni una coalición (bloqueadora) de agentes $S\subseteq A$ ni una asignación $\nu:A\longrightarrow O$ tales que:

- $\nu(a) \in \mu(S)$ para todo $a \in S$,
- $\nu(a)R_a\alpha(a)$ para todo $a \in S$, y
- $\nu(a)P_a\alpha(a)$ para algún $a \in S$.

Cualquier asignación en el Núcleo es individualmente racional y eficiente.

Teorema 1 (Shapley y Scarf, 1974) El Núcleo de cualquier problema es no vacío.

- Dos demostraciones:
 - La original, muy indirecta.
 - La constructiva, propuesta de David Gale, a través de un algoritmo: el algoritmo TTC de Gale (por 'Top Trading Cycles').

El algoritmo TTC de Gale

• **Input:** Un problema (A, O, P, μ) .

• Etapa 1:

- Cada agente "señala" a su mejor objeto. Como hay un mismo número finito *n* de agentes y objetos, por lo menos hay un ciclo.
- Cada agente en un ciclo es asignado al objeto señalado y es sacado del problema con su objeto asignado.
- Si queda al menos un agente, ir a la siguiente etapa. En caso contrario, el resultado del algoritmo es la asignación definida al satisfacer los ciclos.

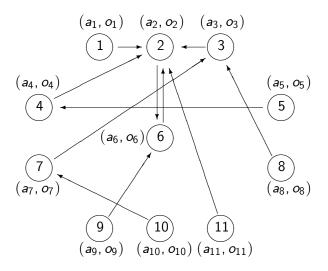
El algoritmo TTC de Gale

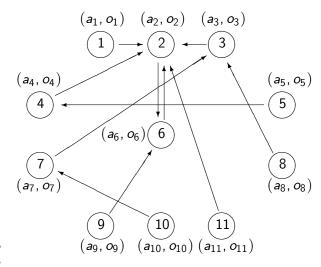
• Etapa k:

- Cada uno de los agentes que quedaron sin asignar en la etapa anterior "señala" a su mejor objeto, de entre los que quedaron sin asignar.
- Cada agente en un ciclo es asignado al objeto señalado y es sacado del problema con su objeto asignado.
- Si queda al menos un agente, ir a la siguiente etapa. En caso contrario, el resultado del algoritmo es la asignación definida al satisfacer los ciclos en todas las etapas anteriores.

Fijado un problema (A,O,P,μ) sea $\eta:A\longrightarrow O$ la asignación obtenida al aplicar el algoritmo TTC: $\mathcal{P}\to\mathcal{A}$ de Gale al perfil P. Es decir, para cada $P\in\mathcal{P},\ \varphi[P]=\eta$.

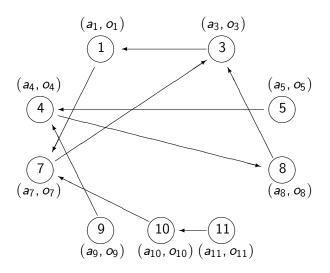
Ejemplo Sea (A, O, P, μ) un problema con |A| = |O| = 11, $\mu(a_i) = o_i$ para cada i = 1, ..., 11, y el perfil P representado por

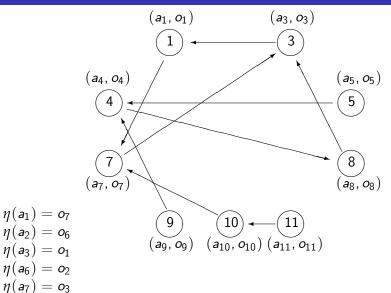

Perfil de preferencias

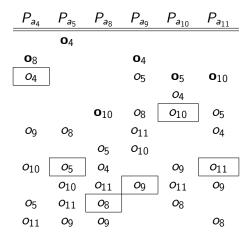

P_{a_1}	P_{a_2}	P_{a_3}	P_{a_4}	P_{a_5}	P_{a_6}	P_{a_7}	P_{a_8}	P_{a_9}	$P_{a_{10}}$	$P_{a_{11}}$
<i>o</i> ₂	06	0 2	0 2	04	0 2	<i>0</i> 3	<i>0</i> 3	06	07	0 2
06	o_1	o_1	08	07	01	08	06	04	o_1	06
07	08	o_{11}	04	<i>o</i> ₃	<i>o</i> ₆	011	o_1	<i>o</i> ₅	<i>o</i> ₅	o_{10}
<i>o</i> ₅	0 9	04	07	<i>o</i> ₆	08	06	<i>o</i> ₂	o_1	04	07
o_1	<i>0</i> 5	07	03	o_1	<i>o</i> ₃	o_1	o_{10}	<i>0</i> 8	<i>o</i> ₁₀	<i>o</i> ₅
04	04	<i>o</i> ₁₀	<i>O</i> 9	08	<i>o</i> ₉	<i>o</i> ₉	07	o_{11}	06	04
<i>o</i> ₉	07	03	<i>o</i> ₆	<i>o</i> ₂	<i>o</i> ₁₀	<i>o</i> ₂	05	o_{10}	<i>o</i> ₂	o ₁
08	<i>o</i> ₃	<i>o</i> ₆	o_{10}	<i>o</i> ₅	<i>o</i> ₅	07	04	<i>0</i> 3	0 9	011
o_{11}	0 2	05	o_1	o_{10}	o_{11}	04	011	0 9	011	0 9
<i>o</i> ₃	o_{10}	<i>0</i> 8	05	o_{11}	04	o_{10}	<i>0</i> 8	<i>o</i> ₂	08	<i>o</i> ₃
o_{10}	o_{11}	0 9	o_{11}	0 9	0 7	<i>o</i> ₅	0 9	07	<i>o</i> ₃	<i>o</i> ₈

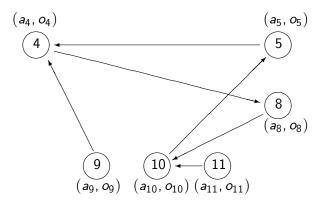
Algoritmo TTC de Gale: Etapa 1

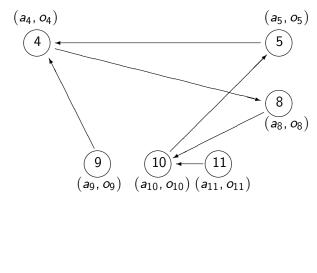
P_{a_1}	P_{a_2}	P_{a_3}	P_{a_4}	P_{a_5}	P_{a_6}	P_{a_7}	P_{a_8}	P_{a_9}	$P_{a_{10}}$	$P_{a_{11}}$
o ₂	o ₆	o ₂	o ₂	O ₄	o ₂	o ₃	o ₃	o 6	o ₇	o ₂
06	o_1	o_1	<i>o</i> ₈	07	<i>o</i> ₁	<i>o</i> ₈	06	04	o_1	06
07	08	o_{11}	04	<i>o</i> ₃	06	011	o_1	<i>o</i> ₅	05	o_{10}
<i>O</i> ₅	0 9	04	0 7	06	08	06	<i>o</i> ₂	o_1	04	07
o_1	<i>0</i> 5	07	<i>o</i> ₃	o_1	<i>o</i> ₃	o_1	o_{10}	<i>0</i> 8	<i>o</i> ₁₀	<i>0</i> 5
04	04	<i>o</i> ₁₀	0 9	08	0 9	0 9	0 7	o_{11}	06	04
0 9	07	03	06	0 2	<i>o</i> ₁₀	0 2	<i>0</i> 5	o_{10}	<i>o</i> ₂	01
08	03	06	o_{10}	05	<i>o</i> ₅	07	04	<i>o</i> ₃	<i>o</i> ₉	011
o_{11}	<i>o</i> ₂	05	o_1	o_{10}	o_{11}	04	011	<i>0</i> 9	o_{11}	<i>o</i> ₉
<i>o</i> ₃	o_{10}	<i>o</i> ₈	<i>o</i> ₅	o_{11}	04	o_{10}	<i>0</i> 8	0 2	<i>0</i> 8	<i>o</i> ₃
o_{10}	o_{11}	0 9	011	0 9	<i>0</i> 7	<i>0</i> ₅	0 9	0 7	<i>0</i> 3	08,

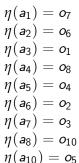

Algoritmo TTC de Gale: Etapa 1



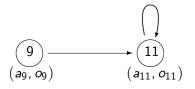

$$\eta(a_2) = o_6$$
 $\eta(a_6) = o_2$

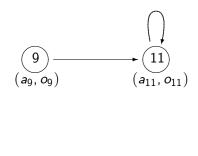

P_{a_1}	P_{a_3}	P_{a_4}	P_{a_5}	P_{a_7}	P_{a_8}	P_{a_9}	$P_{a_{10}}$	$P_{a_{11}}$
			O 4	o ₃	o ₃		O 7	
	\mathbf{o}_1	o 8	07	08		O 4	o_1	
o 7	o_{11}	04	<i>o</i> ₃	o_{11}	o_1	<i>o</i> ₅	<i>0</i> 5	\mathbf{o}_{10}
<i>o</i> ₅	04	0 7				o_1	04	07
<i>o</i> ₁	07	<i>o</i> ₃	o_1	o_1	o_{10}	<i>o</i> ₈	010	<i>o</i> ₅
04	<i>o</i> ₁₀	<i>0</i> 9	08	<i>o</i> ₉	<i>o</i> ₇	o_{11}		04
<i>o</i> ₉	<i>o</i> ₃				<i>o</i> ₅	o_{10}		<i>o</i> ₁
08		o_{10}	<i>o</i> ₅	0 7	04	<i>o</i> ₃	0 9	011
o_{11}	<i>o</i> ₅	o_1	o_{10}	04	011	0 9	011	0 9
<i>0</i> 3	08	<i>o</i> ₅	o_{11}	o_{10}	<i>o</i> ₈		08	<i>o</i> ₃
<i>o</i> ₁₀	0 9	o_{11}	0 9	<i>o</i> ₅	0 9	07	0 3	08





 $\eta(a_3) = o_1$ $\eta(a_6) = o_2$ $\eta(a_7) = o_3$




$$P_{a_9}$$
 $P_{a_{11}}$

 ${\bf o}_{11}$

$$\eta(a_1) = o_7
\eta(a_2) = o_6
\eta(a_3) = o_1
\eta(a_4) = o_8
\eta(a_5) = o_4
\eta(a_6) = o_2
\eta(a_7) = o_3
\eta(a_8) = o_{10}
\eta(a_{10}) = o_5
\eta(a_{11}) = o_{11}$$

- El agente ag es asignado a su propio objeto og.
- ullet Por lo tanto, la asignación η del Núcleo obtenida por el algoritmo TTC de Gale se puede representar por

- Idea de la demostración del Teorema 1.
 - $S_1, ..., S_K$.
 - Iteración: no hay ningún agente que pueda estar estrictamente mejor (en una coalición bloqueadora).

Algoritmo TTC de Gale: Unicidad

- Roth y Postelwaite (1977) se preguntaron si existen otras asignaciones en el Núcleo distintas a la seleccionada por el algoritmo TTC de Gale.
- La respuesta es negativa: el Núcleo sólo contiene la asignación obtenida por medio del algoritmo TTC de Gale.

Teorema 2 (Roth y Postelwaite, 1977) El Núcleo de cada problema contiene sólo una asignación.

Idea de la demostración del Teorema 2 e importancia de estos resultados para determinar el ámbito de los trasplantes cruzados de riñones (Hospitales, CCAA, Estados, Europa, ...).

Algoritmo TTC de Gale: no manipulabilidad

- La asignación η seleccionada por el algoritmo TTC de Gale en el problema (A, O, P, μ) depende del perfil P.
 - En particular, el objeto recibido por el agente $a \in A$ en η depende de su preferencia P_a .
- ¿Qué incentivos induce el TTC de Gale a los agentes (a sus nefrólogos) para que revelen sus verdaderas preferencias?
- Equivalentemente, ¿es posible que un agente, revelando una preferencia distinta de la que tiene, pueda terminar con un objeto mejor que el que hubiera obtenido revelando su verdadera preferencia?

Algoritmo TTC de Gale: no manipulabilidad

• Decimos que un mecanismo $\phi: \mathcal{P} \longrightarrow \mathcal{A}$ es manipulable si existe un perfil P, un agente $a \in A$ y un preferencia P'_a tal que

$$\phi[P'_a, P_{-a}](a)P_a\phi[P_a, P_{-a}](a).$$

Teorema 3 (Roth, 1982) El Núcleo (el mecanismo TTC: $\mathcal{P} \longrightarrow \mathcal{A}$) no es manipulable.

Teorema 4 (Ma, 1994) Un mecanismo $\phi: \mathcal{P} \longrightarrow \mathcal{A}$ es individualmente racional, eficiente y no manipulable si y sólo si ϕ es el mecanismo del Núcleo (el que selecciona la asignación de acuerdo con el algoritmo TTC de Gale).

Trasplantes cruzados

- Roth, Sönmez y Ünver (2004) fueron los primeros en proponer el algoritmo TTC de Gale para organizar trasplantes cruzados de riñones de donantes vivos.
- Existen varios programas:
 - Desde 2004: Roth, Sönmez, Ünver, Delmonico y Daidman empezaron el NEPKE ('New England Program for Kidney Exchange').
 - Desde 2005 el 'Johns Hopkins Kidney Exchange Program'.
 - Desde 2005 el 'Alliance for Paired Donation' (APD) de Ohio.
 - Desde 2007 el 'National Health System-Blood and Transplant' en el Reino Unido.
 - En la actualidad, el 'United Network for Organ Sharing' (UNOS) de los Estados Unidos está desarrollando un programa nacional.
 - Desde 2008 la ONT de España está desarrollando un programa a nivel nacional.

Adaptación del TTC de Gale

- Restringirse a ciclos cortos (de 2 o 3 parejas) para evitar problemas
 - de incentivos: necesidad de que las intervenciones quirúrgicas sean simultáneas,
 - técnicos: coordinación de hospitales, quirófanos, equipos humanos, etc.
- Incorporación de parejas compatibles.
 - Evidencia sobre el aspecto afectivo.
- Incluir donaciones indirectas: intercambio entre el donante (incompatible con su paciente) y la lista de espera de riñones en muerte encefálica.
 - Efectos positivos: (i) más órganos y (ii) aumenta la probabilidad de que el paciente del donante (a la lista de espera) reciba un trasplante.
 - Efecto negativo: perjudica a los pacientes en la lista de espera (sin donante vivo) del grupo O.

Simulaciones

- Roth, Sönmez y Ünver (2004) consideran varios mecanismos distintos para compararlos con la situación de ausencia de trasplantes cruzados:
 - (1) el TTC de Gale,
 - (2) el TTC de Gale restringido a ciclos de dos parejas,
 - (3) el TTC de Gale restringido a ciclos de dos parejas y con donaciones indirectas, y
 - (4) una variante del TTC de Gale con donaciones indirectas.

Simulaciones y resultados

- Las simulaciones consisten,
 - en primer lugar, en generar aleatoriamente una muestra de n pares paciente-donante utilizando las distribuciones empíricas de las características de los paciente y donantes (UNOS);
 - en segundo lugar, en generar las preferencias de los pacientes sobre el conjunto de riñones en la muestra; y
 - en tercer lugar, en realizar simulaciones con 100 iteraciones para tres poblaciones donde *n* es igual a 30, 100 y 300.
- Roth, Sönmez y Ünver (2004) sugieren que las ganancias en bienestar de los trasplantes cruzados podrían ser sustanciales,
 - tanto en términos del número de trasplantes
 - como en términos de la calidad de los mismos.

Resultados de las simulaciones

- En particular, pueden aumentar el número de trasplantes de riñones de vivos del 54% al 75% si se considera que sólo los ciclos de dos parejas son factibles, hasta un 91% si no se imponen límites en las longitudes de los ciclos.
- Las ganancias de los trasplantes cruzados aumentan cuando
 - (i) aumenta la población de pares paciente-donante,
 - (ii) se permiten donaciones indirectas,
 - (iii) se permiten trasplantes cruzados con ciclos de tres o más parejas,
 - (iv) se consideran a las parejas paciente-donante vivo compatibles como susceptibles de participar en los trasplantes cruzados.

Resultados de las simulaciones

- En el caso más restrictivo en el cual sólo se pudieran satisfacer los ciclos de dos parejas entre parejas incompatibles, los intercambios propuestos por el mecanismo dan lugar a que un 23% adicional de pacientes reciban un trasplante.
- Una parte muy importante de la ganancia de usar ciclos de tres o más parejas proviene fundamentalmente del uso de los ciclos de tres parejas.
 - Parece que las mejoras significativas de bienestar provienen de los trasplantes cruzados con ciclos más cortos, evitándose así los graves problemas logísticos relacionados con la necesidad de realizar simultáneamente ocho o más intervenciones quirúrgicas.

Observaciones finales

- Escasa, pero creciente aparición en el sistema de donantes altruistas ('buenos samaritanos') que permiten los trasplantes en cadena.
- ② Disparidad importante que existe sobre la importancia para la calidad del trasplante de la incompatibilidad HLA entre los nefrólogos de Estados Unidos y los de la mayoría de países europeos.
- Parte de la observación de que pedir que un mecanismo no sea manipulable es inecesariamente exigente (Nicolò y Rodríguez-Alvarez, 2011).
- Necesidad de incorporar aspectos dinámicos al análisis (Ünver, 2010).

¡Moitas grazas!