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1. INTRODUCTION

Spatial statistics is concerned with random phenomena whose spatial location con-
tributes directly to the underlying stochastic model. Data with a spatial or geograph-
ical reference is encountered in a variety of applied fields such as ecology, meteorology,
mining, epidemiology, forestry or satellite imaging, among many others. The spatial
feature may be sometimes the driving force of the process, but even when the study of
purely spatial effects is not the primary goal, the dependence between observation due
to their proximity must be regarded in any descriptive or inferential analysis. Clas-
sical spatial statistics generally distinguishes three main situations where a spatial
component arises, specifically geostatistics (continuously varying spatial processes),
lattice processes (discrete spatial variation) and point processes (random pattern for
spatial locations maybe with associated random observations -marks-), owning par-
ticular tools and goals, but sharing the common factor of dealing with dependent
observations.

In this talk, we will introduce some basic concepts in spatial statistics, presenting
the main ingredients for a proper analysis in each of the different situations, dis-
cussing possible extensions, weaknesses and brand–new areas of development. Some
application examples will be also shown in the presentation.

2. WHAT MAKES SPATIAL STATISTICS SPECIAL?

Spatial statistics owns a particular history within the statistical field, since quite a
few important developments do not come from the study of mathematics, but from
the needs arising in different applications. Some of the first references to a spatial
component appear in Fisher’s randomized agricultural trials, but the main develop-
ments within the geostatistical field were carried out in the 50s by Krige in mining
engineering and continued in L’Ecole des Mines de Fontainbleau by Matheron. Al-
most at the same time, Bertil Matérn introduced a class of correlation models for
real–valued, spatially continuously varying stationary processes (the Matérn class),
and also contributed to spatial sampling and point process theory. Lattice processes,
mainly Gaussian Markov random fields, were approached from a different perspec-
tive and presented by Besag (1974) in his seminal paper. Given the unlike origins of
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each subdiscipline and obviously their own special features, it is not easy to define a
common scheme to assemble geostatistics, Markov random fields and point processes
together, at least, from a frequentist perspective. Besides the lack of a joint scenario
for spatial data analysis, another substantial feature is the non negligible role of the
dependence structure (not being a nuissance parameter), neither in geostatistics, lat-
tice or point processes. A naive way of thinking could lead the practitioner to get
inspired by what has been done in time series, where dependence is also a driving
force. Both areas deal with dependent discrete observations, but apart from this, the
approach to the descriptive or inferential problem is intrinsically different.

In all different situations within spatial statistics, we are interested in explaining
the variability of the process at two different scales (as it’s own goal or as a means for
prediction): the large–scale variability (trend) and the small–scale variability (depen-
dence), which can be approached directly or through a model–based strategy. Keeping
this premise in mind, we will now introduce some basic ideas in geostatistics, lattice
and point processes, noticing some further extensions.

3. TREND VS. DEPENDENCE IN GEOSTATISTICS

Consider a spatial process {Z(s), s ∈ D}, continuously varying over D ⊂ R
d (d ≥

2). A simple way of approaching the large–small scale description, is to decompose Z
as follows:

Z(s) = m(s) + ε(s), s ∈ D ⊂ R
d (1)

where m(·) is a deterministic function capturing the large–scale variability (spatial
trend) and ε is usually a zero–mean stationary Gaussian process. Representation
(1) can be viewed as a regression model and therefore, estimation procedures can
be borrowed from the regression literature. From this approach, the dependence can
be seen as a nuisance parameter which is not of primary interest but which needs
to be accommodated appropriately in the model in order to avoid compromising the
estimation and interpretation of regression and other parameters. We should notice
that, although prediction was in principle the main goal of geostatistical methods, as
it will be seen later, estimation helps in the understanding of the stochastic device,
and this knowledge may be incorporated in order to improve prediction results.

In a classical geostatistical analysis, one should start with the specification of a
parametric model for the trend, or proceed with a nonparametric fit, ignoring the
spatial dependence structure to obtaine a provisional estimate of the large scale vari-
ation. In this first step, no knowledge of the second–order structure of the process is
needed. In a a second step, one would try to explore the dependence structure based
on the residuals from the provisonal trend estimator. In the next sections, we recall
some ideas on how the trend and dependence structure can be approximated, jointly
with a (not exhaustive at all) list of references.

3.1 Regression–inspired estimation

Assuming a spatial unilateral first–order autoregressive moving average model for
the errors in (1), Basu and Reinsel (1994) propose an iterative estimation procedure
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for the estimation of a parametric linear trend in the spatial setting. In their ap-
proach, the error covariance matrix is computed by maximum likelihood or restricted
maximum likelihood, based on residuals. Multi–stage ad hoc fitting procedures for
linear and nonlinear trends were also proposed by Haas (1996) and Neumann and Ja-
cobson (1984), but with no theoretical results. The general case where the trend may
be nonlinear and the errors are spatially correlated (with unknown dependence) was
considered by Crujeiras and Van Keilegom (2010), introducing a two–step procedure
based on least squares estimation both of the trend and the dependence parame-
ter, but that could be extended allowing for maximum likelihood estimators of the
covariance structure.

The simplistic formulation in (1), can be imbued in the generalized linear model
(GLM) framework, which in the classical setting for independent data, provides a
unifying framework for regression models with continuous or discrete response. This
formulation has been adapted to account for dependent observations (see Diggle and
Ribeiro (2007), Chapter 4, for dicussion on generalized geostatistical linear models).
Generalized linear mixed models (GLMM) are obtained by the inclusion of a random
effect (or a latent variable) in the linear predictor, which in the simplest case, is as-
sumed to be mutually independent accross observations, allowing for over–dispersion
with respect to the corresponding GLM. In order to account for spatial variation, the
random effects can be interpreted as a signal from a certain Gaussian field, producing
a generalized linear geostatistical model (GLGM), thoroughly investigated by Diggle
et al. (1998).

3.2 Spatial dependence through variograms.

A very simple model of spatial variation assumes that the process is Gaussian,
zero–mean and has stationary increments (intrinsically stationary). This means that
the spatial covariance can be characterised through the variogram 2γ(s,u) = Var(Z(s)−
Z(s+ u)). If the process is (second–order or weak) stationary, where mean and vari-
ance are independent of locations, then the variogram is just a function of the different
vector between the locations 2γ(s,u) = 2γ(u). The variogram is a very well estab-
lished tool in the analysis of spatial data and Cressie (1993) gives a detailed treatment
of variogram properties and estimation. There has been a broad interest in the spatial
statistical literature for estimating the variogram, both from parametric and nonpara-
metric perspectives. There exist a large variety of parametric families for variograms,
such as the already mentioned Matérn class. Within a parametric family, estimation
can be done by least–squares (ordinary, weighted or generalized), maximum likelihood
or minimum distance methods.

Least–squares methods are based on a pilot (nonparametric) estimator of the
variogram. Given that the variogram is the variance of the difference process, it can
be estimated by a sample variance for each spatial vector u (or defining a tolerance
region around it), although a robust transform of the sample variogram in the square–
root absolute value scale provides better results, and enables the use of the variogram
as an inferential tool. For instance, in the case of independent spatial data, the
distributional properties of the sample variogram in the robust scale can be evaluated
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and exploited to construct a test for the presence of spatial correlation, as described
by Diblasi and Bowman (2001). Similarly, a test of goodness-of-fit assuming known
parameters can be constructed, as discussed in Maglione and Diblasi (2004). However,
beyond these rather special cases, diagnostic and inferential procedures based on the
sample variogram have proved difficult to develop.

Smoothing methods have been also used for variogram estimation, examples in-
cluding kernel methods or splines. The idea of using smoothers for variogram es-
timation is based on the interpretation of the (empirical) variogram cloud, that is,
square–root differences with respect to distances, as a dispersion plot in an isotropic
setting. Smooth variogram estimators can be used as pilots in obtaining least–squares
estimators, but one should be aware of inappropriate use of smooth variograms as a
means for broadly reflecting the underlying dependence of the data. One of the basic
reasons is that the building blocks in the variogram cloud are not independent and
they do not have the same variance. Usually, the smooth variogram estimators ob-
tained with a kernel approach, are not valid variograms in the sense that they do not
guarantee (or it cannot be proved for a general situation) a conditionally semidefinite
negative behaviour (see Cressie (1993) for theoretical details for the variogram).

3.3 Some extensions.

Prediction. Krige’s work in geostatistics was primarly motivated by the prediction of
the likely yield of a mining operation over a spatial region, given the results of samples
of ore extracted from a finite set of locations. Krige’s prediction proposal (kriging)
assumed that the trend in (1) was constant, and spatial prediction of the field value at
a certain location was done considering the best linear unbiased predictor (minimum
prediction error variance). The classical procedure has been extended in order to
account for more complex trend structures, non–Gaussian responses, multivariate
settings, external information, etc.
Prediction in high dimensions. As it was noticed in the Introduction, datasets with
a huge amount of information are nowadays being collected, as in satellite image, for
instance. Spatial statistics is such situations is challenging, mainly because of the
big-n problem (the number of operations in solving a kriging prediction problem is
O(n3)) and due to the fact that observation are taken in large spatial domains, and
the spatial process considered therein may exhibit a non–stationary behaviour. Fixed
rank kriging, introduced by Cressie and Johannesson (2008) tries to overcome this
problem by defining a flexible family of non-stationary covariance functions is defined
using a set of basis functions that is fixed in number. Dimensionality reduction seems
to be the way to deal with this type of datasets, also from a Bayesian perspective.
Wikle (2010) proposes representing the spatial process in terms of a latent Gaussian
field with reduced dimension, and take advantage of the hierarchical computational
tools.
Space–time geostatistics. From a pure probabilistic perspective, a space–time process
can be regarded as a stochastic process in three dimensions, considering time as an
extra coordinate. With this view, the dynamical behaviour cannot be appropriately
capture, and although random fields theory has been developed in a quite general
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context, the study of space–time process still needs a carefully view insight. There
has been a large amount of recent works on space–time models, mostly focused on the
description of the covariance structure, overcoming the simplistic assumption of sep-
arability, where the spatial and temporal dependence can be modelled independently,
with no interaction between them. Different class on non–separable spatio–temporal
covariances have been proposed by Cressie and Huang (1999), Genton (2007) and
Ma(2003, 2008). Despite the great effort to introduce these classes of covariances,
there is no a universal recipe on how and when use each of the proposals. That is the
reason why some authors have developed different procedures for assessing separabil-
ity in a spatio–temporal process, such as Fuentes (2005), Mitchel et al. (2005) and
Crujeiras et al. (2010).
Simplifying hypothesis and the SPDE approach. Although separability has been no-
ticed as a simplifying assumption in the analysis of spatio–temporal data, there also
exist simplistic scenarios in the pure spatial context, such as those ones considering
second–order stationarity or isotropy. Testing procedures for assessing hypothesis
in the spatial case are not that abundant. One of the challenges of modern spatial
statistics is to develop easy–to–use tools for exploring and assessing these features
and construct a unified framework where all these characteristics (anisotropy, non
stationarity, lack of separability) could be jointly assemble. Is it possible to obtain
such a class of general spatio–temporal processes? And if so, is inference possible?
The answer to this question seems to be in the stochastic partial differential equations
(SPDEs). Lindgrenn et al. (2011) recover this idea from numerical analysis, where
Gaussian random fields with Matérn covariance can be obtained as the solution of a
fractional SPDE. Far from making inference more complex, the weak solution of such
an SPDE provides a Gaussian field with sparse precision (inverse covariance) matrix,
that is, a Gaussian Markov Random Field, allowing for approximate inference in a
Bayesian framework.

4. SPATIAL POINT PROCESSES

A spatial point process is a stochastic process each of whose realizations consists
of a finite or countably infinite set of points in the plane (events) creating a point
pattern and that may have associated variables (marks). Classical examples of point
patterns include the study of tree patterns in a forest or presence/absence and animal
abundance. When building up a model for this kind of processes, one should try
to reflect the physical mechanism generating the pattern, albeit in a simple manner.
This mechanism may be simple (for instance, a random pattern) or may also reflect
properties as inhibition or clustering among events.

A classical way for describing the physical mechanism is through the homogeneous
Poisson process, where (a) the number of events in a certain spatial region follows
a Poisson distribution with constant intensity, but proportional to the spatial area
and (b) the number of events in two disjoint spatial regions are independent random
variables. This second property is known as complete spatial randomness, providing
a baseline to test against clustering or inhibition among events. Situations where a
constant intensity is found in practice are not frequent, so extensions of this type of
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processes are needed, being the simplest one the construction of inhomogeneous Pois-
son processes, that is, Poisson processes with non constant intensity. Nonparametric
tests for assessing complete spatial randomness, and identifying clustering or inhibi-
tion, have been available for a long time. The classical techniques involve distance
to nearest neighbour or nearest event, and are usually callibrated by Monte Carlo
procedures. The intensity function in point processes reflects a first order structure.
For explaning the second–order variability, the second–order intensity fucntion or the
reduced second-moment measure (Ripley’s K function) can be used.

A further extension of the Poisson processes assumes that the intensity function is
also random, leading to a Cox–Process (Moller and Waagapetersen, 2004, 2007). In
this kind of models, the spatial variation is included in a random structure through
an underlying random field, namely, the intensity function, assuming independence
conditionally on this field. Nonparametric estimation of varying intensity functions
is quite problematic from a single realization of the spatial process, although some
kernel–based methods have been proposed (see Diggle, 2003). Although usefull for an
exploratory analysis, kernel intensity estimators may lose the stationarity property of
the Cox process. Log–Gaussian Cox–Processes are a particular case of Cox–Processes,
which consider the random intensity function λ(s) = exp(Z(s)), being Z a Gaussian
random field. With this construction, a highly flexible framework is achieved, al-
though inferential procedures have proved difficult to handle. Usually, a Bayesian
strategy is adopted, although Monte Carlo Markov Chain (MCMC) methods may
result in painfully slow procedures. Nevertheless, with the integrated nested Laplace
approximation from Rue et al. (2009).

As it has already been noticed, spatial point processes may present associated
marks (marked point process) to each event. In this situation, the natural counterpart
of independence is that the unmarked and marked point processes are independent.
Schlather et al. (2004) proposed several summary statistics aimed at investigating
departures from the independence hypothesis. In Chapter 20 of Handbook of Spatial
Statistics (2010), a detailed description of modelling strategies for point processes is
presentend.

5. LATTICE PROCESSES FOR DISCRETE SPATIAL VARIATION

In a natural flow of spatial statistical techniques, those related with spatial process
with discrete variation are usually introduced after geostatistics and before point
processes. In this short paper, we have deliberately leave the description of discrete
spatial variation for the last part. The main reason is that, in practice, although our
process may be continuously or randomly varying over a spatial region, observations
are discrete in space or in space and time. We will briefly introduce what is a Gaussian
Markov Random Field (GMRF) and try to explain why it is becoming a powerful tool
in spatial analysis.

A GMRF is a Gaussian distributed random vector with some conditional inde-
pendence properties. Conditional independence can be specified through a sparse
precision matrix, which is computationally convenient. In his seminal paper, Besag
(1974) specifies a GMRF through the full conditionals, although they cannot be spec-
ified completely arbitrarily as they must ensure a proper joint density (see Rue and
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Held (2005) for details). These are the well known CAR (conditionally autoregres-
sive) models. A more restrictive approach, although an alternative for CAR models,
is simultaneously–autoregression (SAR) modelling (see Cressie, 1993 for details). One
of the nice properties of GMRFs is that they can be easily integrated in a MCMC
sampling scheme for doing Bayesian inference, although for some cases, the algorithms
may run slowly. Applications of GMRF include a large list of fields such as structural
time series analysis, longitudinal and survival data, graphical models, semiparamet-
ric regression and splines, image analysis and, of course, spatial and spatio–temporal
statistics (see the monograph by Banerjee et al., 2004). Specially in this situation,
where a huge amount of data must be analyzed, MCMC scenarios may not provide
efficient results.

An alternative lies in the idea of the sparse precision matrix of the GMRF and the
use of integrated nested Laplace approximations (INLA) for approximate inference
(Rue et al., 2009). The same ideas may be extended for the analysis of geostatisti-
cal or point–processes, assuming an underlying Gaussian random field with Markov
properties (for the intensity in point–processes or for reflecting the small scale vari-
ability in geostatistics). Continuously varying Gaussian processes can be linked with
their discrete counterpart by the SPDE approach (solution and weak solution, re-
spectively). Nowadays, INLA seems to give an answer to complex problems from a
Bayesian perspective, providing approximate inference results.
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